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This document,  is copyrighted © 2006 by Giovanni Racciu <gracciu@xystum.it> and Paolo 
Mantegazza <mantegazza@aero.polimi.it>. Part of this documentation has been copied and 
derived from README files included in the  RTAI3.3  distribution and its CVS repositories.  The 
RTAI-doc project makes no representations or warranties with respect to the contents or use of 
this manual, and specifically disclaims any express or implied warranties of merchantability or 
fitness  for  any  particular  purpose.  The  RTAI-doc  project  reserves  the  right  to  revise  this 
publication and to make changes to its content, at any time, without obligation to notify any 
person or entity of such revisions or changes.

This work is licensed under the Creative Commons  Attribution-NonCommercial-NoDerivs 
2.5 License. To view a copy of  this license,  visit  http://creativecommons.org/licenses/by-nc-
nd/2.5/

If  you  have  questions  or  suggestions  about  this  document,  please  send  an  email  at 
gracciu@xystum.it or contact the RTAI-doc project by use of the mailing-list.

Preliminary version

We have decided to start  publishing this  document,  even if  it  contains only few 
chapters, as we think it may be very useful to the RTAI community. We will keep 
releasing new versions of this document as soon as new chapters are available.
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Download RTAI – The CVS repository

The  very  first  place  to  look  for  the  latest  stable  release  is  the  main  RTAI  website 
http://www.rtai.org. On the first page there is always a link to the tarball with all the source 
code needed to compile and install the actual released version of RTAI; this tar archive also 
contains the certified patches for the GNU/Linux kernel; you basically only need this to get 
started. 

While if you would like to test new functionalities or if you are looking for a minor bug fix which 
has not been back ported yet to the official stable version, you may want to download the 
latest version from the CVS. Doing this is just a matter of accessing the public CVS repository of 
this  project  which  is  also  browsable  on-line  at  the  following  address 
http://cvs.gna.org/cvsweb/?cvsroot=rtai. It  is  suggested browsing it  to locate better  what is 
needed and to get familiar with the naming scheme used by RTAI. Once you have found what 
you need to download on your local machine you have to access the CVS anonimously with the 
following comand:

cvs -d:pserver:anonymous@cvs.gna.org:/cvs/rtai co <modulename>

The  module  you  wish  to  check  out  must  be  specified  as  the  modulename.  When  and  if 
prompted for a password simply press the Enter key. The available modules are:

Module Name Description

Kilauea Closed branch

Magma This is the development version

rtai Empty

Showroom It contains all the available examples

Stromboli Closed branch

Vesuvio Closed branch

Vulcano This is the stable version
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Further  information  on  how  to  access  the  CVS  can  be  obtained  at  the  following  address 
https://gna.org/cvs/?group=rtai 

3.1 The showroom repository

As mentioned before one module is named showroom and it  contains a lot of source code 
examples covering almost all the features available in RTAI. It's important to take into account 
that inside the main RTAI source tarball there are just a few basic examples, in the testsuite 
directory, to allow checking that the installation went well. That is done mainly to keep it small 
and to allow experienced RTAI user to avoid downloading it over and over. For such a reason if 
you  are  approaching  RTAI  for  the  very  first  time,  downloading  the  showroom  is  a 
necessary/mandatory  step.  The showroom is  also  very  important  for  knowing about  newly 
developed features which maybe present in the latest release and that are always explained by 
a brand new example(s).
In order to compile the examples from the showroom, you have to make sure that  $prefix/bin 
is in your PATH variable, where $prefix represents the RTAI's installation root (as you will see in 
the next chapter, by default prefix is set to /usr/realtime). This is important to let the Makefiles 
and the runfiles of each single example access the rtai-config utility. To compile and execute 
the examples just run the make and the ./run script located in its directory. The showroom 
examples directory scheme and names are also very clear to help you understand immediately 
the purpose of a specific example. All the examples are divided into two main branches that are 
“kern”, which contains the examples related mainly to RTAI kernel  mode development and 
“user”,  for  user  space.  Naturally  since  RTAI  schedulers  allow  full  kernel/user  space 
inter/intraoperability you will find also mixed applications in both branches. Last but not least 
all the examples have a README file that explains better its behavior and its design.
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Installing RTAI

Once you have downloaded the latest tarball it's time to start configuring and compiling RTAI, 
but before explaining the entire procedure I'd like to introduce some of the most common 
pitfalls  to  allow a  smooth  installation.  As  you  have  already  learned,  RTAI  is  made  of  two 
separate parts; the patch for the abstraction layer and the services. Any RTAI release comes 
with several patches, which will be described later, but all of them are for a specific vanilla 
GNU/Linux kernel. This means that RTAI is designed to run on a standard Linux kernel which 
can be downloaded from http://www.kernel.org and not on the kernel's source code that comes 
with  the  most  common distributions  and  they  are  sometimes  (read:almost/always)  heavily 
patched and this can lead to incompatibilities, strange warnings and if successfully compiled to 
weird behaviors. For this reason always get a standard fresh kernel. 
Another recurring question/error is that the kernel compiled with your distribution has a lot of 
features which are available as modules or static (compiled with the kernel)  and you must 
somehow simulate this,  also  with  the RTAI  patched kernel,  if  you want  to  have it  running 
transparently.  Doing so is  generally just  a matter of importing the configuration file of the 
actual running kernel. It can be found under the /boot directory as .config or as config-{kernel-
verions-tag}. If you don't want to compile the kernel starting from that file, which will generally 
lead to a longer process and a bigger file, you have to pay attention to enable all the features 
your hardware requires to work properly. This includes the file system, the network card and all 
the options needed; failing to  enable the right  features will  produce a kernel  with  missing 
functions and wrong behavior and in the end you will not be able to fully use the system (as 
expected). Last but not least, always keep your old working kernel and modules available as 
entry in your boot loader so that you can easily access the system if something goes wrong.

4.0 Introduction

RTAI uses only the leanest and fastest RTAI+Linux combination now; it dispatches real time 
interrupts immediately. Moreover within such a scheme i386 has the possibility of completely 
avoiding the dispatching of critical internal timers and interprocessor scheduling interrupts by 
vectoring them directly to their handlers. Such an option strongly enhances performances on 
low end machines and comes by default. You can disable it while configuring RTAI though. See 
the related configuration helper. This will require you to patch Linux just with patches found 
within this distribution. 

4.0.1 Patching and compiling the kernel

The very first step is to patch and build a vanilla Linux kernel tree with the RTAI support. The 
patches, for different architectures and for specific kernels are located under:

rtai_dir/base/arch/<specific_arch>/patches

Once you have chosen and defined one patch that matches your kernel version it's time to 
apply it by typing the following commands:

cd $linux_src_dir
patch -p1 -b < rtai_dir/base/arch/i386/patches/hal-linux-2.6.15-i386-1.2-00.patch

This example applies the latest patch to a GNU/Linux kernel 2.6.15 and it's one available in 
RTAI 3.3. 

Note:Latest kernels are available with additional numbering scheme, for instance at the time of 
this writing the latest stable is 2.6.16.11, but as you will notice the patches are limited to the 
first 3 numbers. Apparently the additional last number should not generate problems and the 
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kernel can be patched and compiled, but it's better to consider using only the official version  
indicated by the patch, because it is the only one fully tested and therefore supported.

It's common to place the Linux kernel source tree under /usr/src/linux (note that it's a link to 
the real directory) but if you would like to keep this build separated from the whole system you 
may create and put everything into a specific directory. If this is your case you need to specify 
this directory during the RTAI configuration step.

Immediately after having patched the kernel you need to configure and compile it.
The  configuration  depends  mainly  on  your  specific  needs,  your  hardware's  spec  and  the 
devices which are on your system; it's a good idea to start the configuration by importing the 
existing .config file which is shipped with the distro. Generally you can find this file under the 
/boot directory with a name config_xxx_yyy (even if this can be different according to the distro 
you choose);  simply copy it  into  the patched  kernel  dir  and rename it  as .config.  A make 
oldconfig command will do the rest, by importing all the existing configuration.

Beside all the specific options you may enable and/or disable there are several of them which 
must be configured to allow RTAI to work properly They are: 

“Use register arguments” under “Processor type and features” must be disabled
“Interrupt pipeline” under “Processor type and features” must be enabled (but, unless 
you want to control/debug the patch behaviour) is better to disable statitics gathering as 
it adds some overhead)
“Module versioning support” under “Loadable module support” must be disabled

Note:  Attention  must  be  taken  for  the  APIC  (Advanced  Programmable  Interrupt  Controller)  
configuration;  the  option  is  located  under  “Processor  type  and  features”.  In  the  previous  
versions the APIC had to be disabled on UP machine, and could only by used on MP ones. With  
the latest RTAI release the APIC can be enabled and used with success even on UP machines 
and with this option enabled the system will benefit of faster timer reprogramming in oneshot  
mode and lesser overhead. Anyhow if the APIC is configured/enabled in the kernel but it's not 
present on your hardware RTAI will complain and give you the following error:

RTAI[hal]:ERROR, LOCAL APIC CONFIGURED BUT NOT AVAILABLE/ENABLED

in this case you have to disable the option and recompile/reinstall the kernel, its modules and 
RTAI.

Note:Before running the compilation for the kernel you may want to configure rtai first (see 
4.1.1) as the configure script will advise if any option for the kernel is wrongly configured.

This document does not cover any other specific issues regarding the kernel compiling and 
installing procedure which you will easily find on the Internet and limits the instructions to the 
following easy steps:

$ make xconfig

$ make

$ make install

If you configured any option as a module you will also have to run:

$ make modules_install
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Note:Once  the  kernel  and  the  modules  have  been  installed  it  maybe  necessary  to  run  a 
mkinitrd script which will create an initial ramdisk for correctly booting the machine. Failing to  
generate it won't allow the system to boot.

You  should  also  define  the  new  kernel  and  it's  parameters  as  a  (new)  entry  inside  the 
configuration  file  of  your  boot  loader.  Again,  it's  important  to  keep  the  old  kernel  entry 
available to avoid problems if something goes wrong with the new RTAI-Kernel.

Note: If you use LILO you should also run the lilo command, while if you use GRUB the entry in  
the menu is enough. The LILO command may also be executed automatically according to 
specific distro's settings.

4.1 Standard installation procedure

The RTAI build system is a merge of Linux's Kconfig with autoconf/automake/libtool. Therefore, 
you can either build RTAI:

4.1.1 Interactive configuration

The interactive configuration is the preferred and easier way to configure RTAI especially for a 
first  time user.  All  the options are browsable,  selectable and well  documented.  To run the 
interactive configuration you have to:

1) Into the source tree like with 3.x (your_source_dir == your_build_dir). Just run either:

$ make xconfig # (Qt-based)
$ make gconfig # (GTK-based)
$ make menuconfig (dialog-based)
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Save your configuration, wait for the shell prompt to come back after the configuration script 
has fully finished, then run "make". Check the output of the scripts to verify if there is any error. 
Generally the script is kind enough to explain you how to correct any errors.

2) Outside the source tree (preferred way). From your fresh build directory, either run:

$ make -f $source_tree/makefile srctree=$source_tree xconfig
$ make -f $source_tree/makefile srctree=$source_tree gconfig
$ make -f $source_tree/makefile srctree=$source_tree menuconfig

If  you  are  using  a  version  of  make  >=  3.80,  then  you  can  even  get  rid  of  the 
"srctree=$source_tree" setting. 

4.1.2 Non-interactive configuration

Since RTAI 3.x has autoconf inside, people needing automatic non-interactive configuration can 
directly use the provided GNU configure script for this purpose. The available configuration 
switches can be listed by running ./configure --help. 
Some configuration targets in base/ can either produce a module, or be statically linked to the 
RTAI schedulers. Either pass "m" for the modular build to their respective --enable-xxx switch, 
or "y" for selecting the built-in mode.

4.1.3 Recycling a configuration file

If you are an experienced RTAI user, you can also recycle an existing .rtai_config file from a 
previous build by running:

$ cp -rp $old_builddir/.rtai_config \
         $new_builddir/.rtai_config
$ cd $new_builddir
$ make -f $source_tree/makefile srctree=$source_tree oldconfig

4.1.4 Selecting alternate compilers

Newest compilers sometimes are generating errors during the build process; for this reason it is 
possible to specify an alternate one. The compiler selection must be done at configuration time. 
There is only the need to pass the right values for the standard environment variables CC and 
CXX, respectively for compiling C and C++ source files. In any case, using a GCC tool chain is 
mandatory. When unspecified, these variables's values respectively default to "gcc" and "g++".

WARNING: this selection is not aimed at toggling the cross-compilation mode on. In order to do  
so, please refer to 4.2
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Examples:

# Start configuring using the Qt-based GUI with alternate compilers
$ make xconfig CC=/my/favorite/c/compiler CXX=/my/favorite/c++/compiler

# Reconfiguring a previous build tree, changing the compilers on-the-fly.
$ make reconfig CC=/my/favorite/c/compiler CXX=/my/favorite/c++/compiler

# Rebuild all [and optionally install]
$ make [all [install]]

4.2 Cross-compilation support

To enable the cross-compilation simply add ARCH and CROSS_COMPILE variables as usual to 
the standard command lines, e.g.

$ make -f $source_tree/makefile ARCH=arm CROSS_COMPILE=arm-linux-

Names of available architectures can be found under base/arch/*.

4.3 Installing the software

When the standard (or cross-) compilation has finished with no errors you may proceed to the 
installation by typing the following commands:

$ cd $builddir
$ make install

Everything  needed  to  use  the  RTAI  distribution  will  be  copied  to  the  default  installation 
directory, or to the one specified during the configuration of the build tree. From now on, you 
should be able to refer to the installation directory as the root of a complete standalone binary 
RTAI distribution.

The  RTAI  programs  can  also  be  installed  under  a  temporary  staging  tree  by  passing  the 
standard DESTDIR variable to "make" while installing. e.g.:

$ make install DESTDIR=/mnt/target

this command will create a standard RTAI hierarchy under /mnt/target, keeping the original 
prefix information unmodified. If the installation directory selected at configuration time was 
"/usr/realtime",  then  the  command  above  will  put  the  RTAI  binary  distribution  under 
/mnt/target/usr/realtime.

WARNING: running "make install" it is required to run several standard RTAI programs correctly. 
RTAI 3.x enforces the actual split between the source distribution tree, the build tree where  
RTAI is going to be compiled, and the final installation directory where RTAI programs can be 
run.  In  any  case,  you  should  only  rely  on  the  installation  directory  contents  to  run  RTAI  
programs.

Note:You should also add to your PATH variables the bin directory of the RTAI installation. If you  
did not modify the target dir it is /usr/realtime/bin. This is necessary to access directly some  
files required to compile and run the programs.

4.4 Compiling parts of the tree

RTAI developers may want to recompile just single parts of the tree from times to times. The 
automake-based build system allows it: just go to the proper directory level, then issue "make", 
as usual. This process will recurse as needed.
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4.5 Changing the configuration

Each time you want to change your configuration, just run "make xconfig|gconfig|menuconfig" 
in your build dir, then "make" (or "make all").

If you only want to rerun the "configure" script using the current RTAI configuration, just run 
"make reconfig", there is no need to restart any GUI for that.

When  invoked  for  the  first  time  in  an  empty  build  directory,  the  default  "make"  goal  is 
"menuconfig" in a regular terminal, or "xconfig" in an emacs-term.

4.6 Modifying the autotool template files

If  you have to  change some template files used by any of  the autotools  (i.e.  Makefile.am, 
configure.in, acinclude.m4), then you will need the following packages to rebuild the derived 
files:

- autoconf 2.59
- automake 1.9.2
- aclocal 1.9.2
- libtool 1.5.8

4.7 Checking the performance

Before using the integrated calibration tool it's a good idea to verify the overall performances of 
your system and find out if it is suitable for real-time applications. Doing so it's just a matter of 
running the latency test which is available for kernel and user mode. It verifies the architectural 
latency and jitter, up to the scheduling of a task. When used with the hard timer in oneshot 
mode it can serve as a fine tuning of the average real-time scheduling latency. In oneshot 
mode the idea is to measure the difference in time between the expected switch time and the 
time when a task is actually called by the scheduler. In periodic mode however the variations of 
the task period are used as measures of the scheduling latency/jitter. The reason for such a 
choice are that  there will be always a drift because the timer interrupt is based on a time 
baseline that is different from the one used to carry out measurement calculations; in case of a 
very good calibration (see next paragraphs) such a drift can be made very small and as far as 
there is no loss of timer interrupts there will be no drift in periodic mode, unless the hardware 
goes astray, so period variations are valid measures. The execution is fully customizable at 
insmod time as it is possible to set up, the  timer mode, the timer period, the averaging time, 
the per average time or overall worst cases and the use of the FPU (with some calculations). 
This  test  is  located,  after  having  installed  RTAI  under  install_dir/testsuite/kern/latency  or 
install_dir/testsuite/user/latency. Running the ./run script will start it and the following results 
will appear:
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As you can see in this example the test shows weird results, which obviously aren't acceptable 
for a real time applications. To better understand why this can happen you should be aware of 
a series of “latency killer” conditions which may be present on your system. Among them there 
are:

-heavy DMA activities (like the hard-drive or other PCI devices)
-the use of an accelerated x-server 
-the USB legacy support
-the power management (both APM and ACPI)
-CPU frequency scaling
-SMI
-plus many others

The  “latency  killers”  cause  unpredictable  timing  results  and  that  is  incompatible  with  the 
concept of real-time. As a workaround you may start disabling them both in the BIOS and in the 
kernel configuration. You may find specific informations on how to disable the functions at 
kernel level under linux/Documentation kernel-parameters.txt.
Once you have disabled the suspected “latency killer” run again the test to see if it was the 
guilty one.

In the above illustration, after having disabled the DMA for the hard-drive, the latency test runs 
fluently without overruns and with acceptable performances.
All the results displayed by the latency tests are in nanoseconds. It's a good idea to run this 
test for a long period of time while stressing the system, like writing on the disks, accessing the 
network and playing with the graphical user interface to obtain the real timing capabilities of 
your system and to find out any possible additional source of latency generation. Once the test 
has  been  successfully  executed  you  may  proceed  to  calibrate  RTAI  to  try  decreasing  the 
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latencies and to obtain a more deterministic system.

Note: Always run both tests (kernel/user) for understanding the overall latency of your system. 
In user mode you should expect a slightly worse result, but not so bad, compared to its kernel  
brother.

4.7.1 The “switches” test

There is another important test-tool, which is placed in the testsuite directory, that can provide 
you some informations about the maximum time RTAI needs to disable the interrupts.  The 
software  is  under  the  testsuite/kern/switches  (or  user/switches)  and  checks  for  the  task 
switching  timings.  To  do  so  the  utility  uses  a  repeated  sequence  of  suspend/resume and 
semaphore  signal/wait,  with  the  FPU support  and  under  a  relatively  heavy load (about  10 
tasks). Assuming the kernel has been properly patched and executed as described before, the 
results gives you an idea about the architectural switching time. If the values are too high you 
should verify again if there is any latency killer left. Moreover you will see that the switching 
time figures a far below the worst case latency with respect to the one will get by running any 
RTAI calibration tool like task scheduling latency or the interrupt only latency check, especially 
if any Linux load is applied. That is a clear evidence that the real latency limitation is very 
seldom due to RTAI but is an intrinsic drawback of using a General Purpose CPU (GCPU) for real 
time applications. To run this test simply execute the ./run script located into the directory. You 
will obtain a result similar to the following:

4.7.2 The “preempt” test

This is the last test which is in the testsuite directory. It is designed to verify the schedulers 
under intense load. You may look at this test as a stress utility. This software combines the 
latency calibration task with a fast and slow task to have two levels of preemption, nesting on 
an odd number of tasks. You may verify what happens by launching the display utility which 
will show the min/max/avrg jitters of the latency check task, next to highest priority, and of the 
slow task, at the slowest priority. Reasonable jitters are a clear indication of preemption. This 
test on a UP machine will eat up to the 75% computing power of your machine so you may 
want to decrease the ticking to obtain less load. This means that you also have to adjust the 
parameters of this test according to your machine spec to avoid unfair locking of the scheduler. 
To apply some additional  stress to your machine you may want to use at least one of the 
following commands:

ping -f whatever.address.youlike
pint -f localhost
top on one screen and maybe another on a X screen
a “while “true”; do ls -lR / > list; done”
a “while “true”; cat /proc/interrupts; done”
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launch at least a dd command to access heavily the hard-drive
It is also suggested to run run this test for several time (at least a couple of hours) to get the 
real picture of your machine. This test is also available in the user subdirectory.

4.8 Using the integrated calibration tool for i386 architectures

RTAI 3.x comes with a brand new calibration tool which should help you determining if your 
hardware platform is up to the hard real-time duties and to tune it to its best. You can find this 
tool under $installdir/calibration. To obtain all the options just type:

$ ./calibrate –help

To run this tool the following modules should be already loaded:

1) rtai_hal
2) rtai_lxrt or rtai_sched
3) rtai_fifos
4) rtai_calibrate

Note: The rtai_lxrt must be inserted if you want calibrate, for further use, the Linux threads in  
kernel; while the rtai_sched is for using the specific RTAI kernel tasks, along with Linux threads 
in kernel.

You can also execute the ./run script to automatically load the modules and launch the tool. 
This scripts also accepts some options like: calibrate_irq and calibrate_user. 

The main purpose of the calibrate tool is to show you how to fine tune your system as it gives 
informations about the 8254 oneshot mode, the CPU frequency, the APIC frequency, the latency 
and the worst case interrupt locking/contention.

There is a complete README file located under base/arch/i386/calibration which contains all the 
details  about  each calibration procedure but  briefly  we may say that  the  8254 Calibration 
evaluates the time it takes to write two bytes to the 8254 timer. The APIC Frequency calibrates 
the APIC timer against the 8259 timer. The CPU Frequency test calibrates the cpu clock against 
the 8259 timer. You can run the two above tests together simply by typing calibrate -b. The 
Latency test calibrates the scheduling latency of RTAI schedulers with oneshot timers, to allow 
more precision for  timed tasks.  The last  important  test  is  the  interrupt  locking/contention 
(calibrate -i); more and more motherboards are being sold with chipsets that have hardware 
optimizations allowing locking the bus, maybe up to few milliseconds. Without judging if such a 
way of working is acceptable, it make make it appear to improve overall average performances 
in general applications, it surely dooms real time usage. Often what RTAI users see, are large 
scheduling jitters and they start hinting at bugs that likely do not exist. This check is aimed at 
helping in tracking such a problem. It measures interrupt latency by using the TSC on the timer 
interrupt, machines without TSCs are old enough to have no optimizing chipsets. Thus they do 
not have such a problem. The only module implied is rtai.c, there is thus no scheduling but just 
interrupt dispatching, that should have latencies in the range of 20/30 us worst case. So if you 
see something too much higher then play with its configuration parameters, with those of Linux 
as well, and you may end in buying another board. The worst interrupt latency is displayed at 
the end of the run, which comes when you  type "Ctrl-C". Note that it is possible to check it also 
on a scope by defining using "-sy"  and connecting the scope to the first output bit of the 
parallel port.
See also the README.SMI file in the same directory for some clues that might help with some 
INTEL chipsets.

4.8.1 Playing with the showroom calibration tool

In the showroom repository there is a modified version of the calibration tool; it differs from the 
standard one mainly because it can calibrate both RTAI ktasks and Linux kthreads and it is 
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more  interactive  and  therefore  easier  to  be  used.  This  test  is  placed  under: 
showroom/v3.x/kern/i386/calibration

All the available tests can be executed without exiting and restarting the process, thus allowing 
a faster and more clear calibration of your hardware.
To choose a test simply type the “Upper case character” as indicated in the list and insert, if 
required, the proper setup values.

With this  tool  you can also  find  out  what  is  the  minimum period the  machine  can  handle 
without freezing. This test is not really for calibrating the hardware but it's important to give 
you an idea on the maximum achievable performance. To discover this limit, simply run a bus 
Lock check with a decreasing period up to the machine freezing.

Note: You should always run the calibration test for a reasonable period of time and under an 
average system load to discover the real values or at least the get the ones closest to the  
system true performances.

4.8.3 What to do with the results

As you learned, the results will give you some advice regarding your hardware platform; now it 
is important to use them to customize your RTAI installation to achieve better timing values. 
First of all we need to understand that even if calibrating is not strictly necessary, as RTAI will 
run happily even without it,  it's much better to configure the machine at it's best so that you 
can get the maximum from it. RTAI has some definitions, inside the source code which can be 
used to assign the right values which came out from the calibration. These values, like the 
8254 setup time, the APIC frequency (if the APIC is present) and the CPU frequency must be 
inserted by hand in the asm-i386/rtai_hal.h  file while the latency definition is defined in the 
rtai_config.h file. After having modified the source you obviously need to recompile an reinstall 
RTAI before the changes can take effect.
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These values can also be passed to the modules, thus avoiding recompiling RTAI and allowing 
an easier/portable installation on different machines. The timer setup and the latency can be 
passed to the scheduler module while the APIC and CPU frequency to the rtai_hal module like in 
the following examples:

Get the result coming out from calibrate -c which is the CPU Frequency and type:

insmod rtai_hal.ko rtai_cpufreq_arg=996677084 

If the APIC is present run calibrate -a and pass the result to rtai_hal with:

insmod rtai_hal.ko rtai_apicfreq_arg=VALUE_FOR_THE_APIC

The  8254 Calibration and the  Latency  (calibrate  -r  and -k  or  -u)  should  be  passed to  the 
scheduler rtai_ksched or rtai_lxrt

insmod rtai_lxrt.ko  SetupTimeTIMER=xvalue Latency=yvalue

or 

insmod rtai_ksched.ko  SetupTimeTIMER=xvalue Latency=yvalue

Note: The latency should be calibrated to find out an average value which has to be acceptable 
both for kernel and for user, even if, as you will notice, the differences are very small. While, if  
your own RTAI project, is based only on kernel or only on user mode, just check the latency for  
the selected scheduler.

At the end you may want to run again the latency test and the calibration to verify the latest 
performance level after the tuning procedure.
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Chapter 5 RTAI schedulers

Schedulers and hard real time in kernel/user space.

The scheduler is the heart of RTAI, it provides trough a series of mechanisms the real-time 
capabilities which are peculiar to this project. By using the RTAI scheduler the process can 
meet hard real time constraints and being able to run deterministically, that means that the 
process  can  be  executed  precisely  as  designed  and  not  limited  by  the  general  purpose 
GNU/Linux scheduler. A real-time process which links to RTAI can therefore used to control 
complex applications, such as numerical control, industrial process and any complex task which 
requires “correct” scheduling.

RTAI provides symmetric hard real time services inter/intra user/kernel space. Such a support 
comes through two schedulers, that at the moment are called rtai_lxrt and rtai_sched.  They 
can operate in both user and kernel mode and they differ only in relation to the objects they 
can schedule. That means that rtai_lxrt is simply a GNU/Linux co-scheduler, this means that it 
supports hard real time for all Linux schedulable objects like processes/threads/kthreads. The 
rtai_sched  instead  supports  not  only  hard  real  time  for  all  Linux  schedulable  objects,  like 
processes/threads/kthreads, but also for  RTAI own kernel tasks,  which are very light kernel 
space only schedulable objects proper to RTAI. 

So while in user space there is no choice but scheduling Linux processes and threads, one could 
ask her/himself what is worth the redundancy of having different scheduling objects in kernel 
space, as at a first glance they will afford much the same functionalities. Understanding   the 
advantages and the disadvantages of one scheduler with respect to the other is important to 
decide which one to use and how to implement your own real time software project.  Please 
remark that for user space only applications the two schedulers are the same. So the 
idea that user space means LXRT is wrong as RTAI is LXRT always. The different 
names  of  the  schedulers  are  meant  just  to  distinguish  the  schedulable  objects 
available  in  kernel  space and to  ease those that  want  to  use Linux schedulable 
objects only and everywhere.

Thus let's  say immediately that  the big advantage of  RTAI's light kernel  tasks is their  fast 
switching time with respect to Linux kernel threads, but on the other side it's important to know 
that they operate outside any Linux environment. This behavior requires some special care if 
one needs to inter-operate with Linux. This attention has not to be payed with Linux kernel 
threads as they offer the advantage of being fully integrated in the Linux environment and ease 
any  needed  RTAI  Linux  interaction.  So  unless  there  is  a  real  design  constraint  using  the 
GNU/Linux co-scheduler is the best choice; or at least is the one which gives more freedom to 
the development process.

5.1 How the scheduler(s) works

That said let's see first how any of the 2 available RTAI schedulers can become a co-scheduler 
of Linux schedulable objects. To such an aim we assume to be within a process, you know how 
to build it for sure: launching it by typing its name, through a shell scripts, a fork, a user thread, 
created either by pthread_create or clone, a kernel thread, created by kernel_thread or the 
newer support functions found in 2.6.xx. Then to use RTAI you need to extend the Linux task 
structure, by linking it to RTAI. That comes by using:

• rt_task_init_schmod (or with rt_task_init, a simpler but somehow limited shortcut) in user 
space only;

• set_rtext in kernel space, but you'll never need to use it directly as rt_task_init, if  
you are using rtai_lxrt, and rt_kthread_init, both with rtai_lxrt and rtai_sched, 
are the only things needed mostly. 
After such calls your Linux schedulable object can use both Linux and RTAI APIs, without 
any constraint, but you'll be in hard real time in kernel space only. At most you might be 
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in  Linux  user  space  soft  real  time  by  setting  SCHED_FIFO/SCHED_RR  in 
rt_task_init_schmod or, in kernel space, by calling rtai_set_linux_task_priority to obtain 
the same result.  Note that fifo is the default; Round_Robin must be set if you want this 
behavior (see also rt_set_sched_policy)

At  this  point  if  you  want  to  operate  in  hard  real in  user  space  time  you  have  to  call: 
rtai_make_hard_real_time. In user space you should anticipate such a call with a cautious stack 
extension plus a preallocation of all the needed memory followed by memory locking, see "man 
mlockall", to convert into “static” all of your needed stack and heap. 

You may also want to use the macro rt_grow_and_lock_stack. That is needed to avoid breaking 
hard real time through dynamic virtual memory paging. In kernel space there is no such a need 
for the stack, but beware that you'll have available just the small stack that the kernel makes 
available for its kthreads, approximately either 4 or 8 KB acccordingly upon how you have 
configured it in Linux, but you need to do much the same with k/vmalloc, that is call them for 
all of what is needed before going hard real time anyhow, even if without the need for any 
further memory locking call. Notice that there is a difference here with RTAI porper kernel tasks 
as for them you can assign a larger stack, as allowed within the memory size you assigned  at 
RTAI configuration (the default is 2 MB).
Now you are in hard real time and to keep so you cannot use any Linux syscall or kernel space 
service as that will:

● send you back into Linux hands
● execute what you asked to Linux, possibly being rescheduled by it
● return to RTAI hard real time when Linux has served you. RTAI can bear such things but 

it is suggested that you'll be fully aware of it by mating you hard real time task to a 
Linux buddy, to which you'll ask for the Linux service you need, thus being fully aware 
that you are giving up hard real time till your buddy has served you. If you'll find it a bit 
annoying consider  using  the  support  of  Linux  server  RTAI  makes available  through: 
rt_linux_syscall_server_create; If that is still unacceptable then keep mixing Linux and 
RTAI  even  for  hardened  tasks but  be  aware  that  experience  shows  that  even 
experienced users have found them bitten already by too much confidence in doing it 
"we know what we are doing" way. With too much a confidence Linux services are often 
placed, inadvertently of course, in the wrong place and you'll get slapped, better say 
you'll slap against end run stoppers, may be it is better to call them crashes of course. 
Notice that RTAI does such transitions as effectively as possible. So as hard real time 
capabilities improves in Linux natively (PREEMPT_RT) such pains might be lifted a bit 
and a higher level real time interoperabilty might become feasible. Finally when a task is 
exiting  or  hard  real  time  is  not  needed  any  more  one  should  call 
rtai_make_soft_real_time following it with:

● rt_task_delete in user space, to detach RTAI from the Linux task structure;
● clr_rtext in kernel space to do the same for kernel threads, but you'll need not to 

use it as in such a space rt_task_delete is all what is needed also.  Latest RTAI 
versions should be capable of doing that for you, if you'll forget it.

The above generic scheme is mostly used for user space, a worth to note exception being 
found in netrpc.c. In fact in kernel space the standard usage legacy is to work in hard real time 
mode directly and this is where the difference between rtai_lxrt and rtai_sched comes into the 
play. To understand it more clear, one should recall that RTAI was first in promoting hard real 
time in user space and the symmetric kernel/user space usage was achieved by using RTAI own 
light kernel space tasks only. When the need was felt of supporting a symmetric scheduling in 
user/kernel space based on a co-scheduler approach only emphasis was shifted to user space 
mainly with some kernel space only. So to avoid the burden of making Linux kthreads hard real 
time, as explained above, a support for the direct creation of hardened Linux kthreads was 
created,  by  setting  up  functions  rt_kthread_init and  rt_kthread_init_cpuid,  mirroring  the 
functions rt_task_init and rt_task_init_cpuid used for RTAI own light kernel tasks. However RTAI 
users were most used to the latter function so, to allow them to not care of what was behind 
the curtains, there was the need to have  rt_task_init and  rt_task_init_cpuid create hardened 
Linux kthreads. In such a view rtai_lxrt must be used, so that kthread_inits and task_inits end in 
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being the same things. Thus users wanting to use RTAI own light kernel threads only or both 
them and hardened Linux kthreads should use rtai_sched, caring of using kthread_init/task_inits 
according to their needs.
So  let's  get  rid  of  badly inherited legacy concepts  that  drifted into  a  long series of  urban 
legends, not to say FUD, and state clearly what has been true for years now:
THERE IS JUST ONE WAY OF SCHEDULING IN RTAI AND IS AN ORIGINAL RTAI FIRST, IT HAS AN 
UBIQUITOUS APPEARENCE IN TWO FORMS BECAUSE OF WHAT EXPLAINED ABOVE.

5.2 How does hard real time comes for Linux schedulable objects?

Hardened real time Linux schedulable objects are just normal Linux processes/threads/kthreds; 
by calling  rt_make_hard_real_time a task suspends itself  so that another schedulable Linux 
objects is switch in. As soon as the new task is switched in, the RTAI task switching is called, 
without even exiting the just called Linux "schedule" function and the RTAI tasks is resumed in 
real time hardened mode. When it has nothing to else do, it will call RTAI rt_schedule and such 
a function will  schedule a Linux object again. Notice that,  full  interoperability of Linux/RTAI 
context switches is assured by a a common context switch function available in Linux sched.c. 
This is believed to be a truly original, albeit trivial idea, within Linux environment that appear to 
have been blatantly copied by others. Doing the trick the other way around, that is going back 
into Linux hands, requires some care. In fact once hardened a schedulable object can fully 
preempt Linux anywhere without it being aware it happened. The solution is as trivial as going 
hardened though. So, for the hardened task, suspend itself and put itself on a circular buffer 
list; there is one for each CPU and waiting to be awaken by a call to Linux "wake_up_process" 
when there is no other hard real time to be scheduled by the RTAI scheduler, so a full return to 
the Linux environment is ensured. Thanks to the commonality of context switches when the 
task is resumed by Linux it finds itself softened again. However it will not be at the end of Linux 
"schedule"  but  of  RTAI  "rt_schedule"  instead.  So  RTAI  must  care  of  carring  out  the  same 
epilogue found in schedule and all the black magic will do no harm. The actual function doing 
all of it are: steal_from_linux and give_back_to_linux.
Such  functions  are  used,  without  an  explicit  user  request,  when  a  hardened  real  time 
schedulable objects  issues a  linux syscalls.  For  that  RTAI  has  to  intercept  all  of  the  Linux 
syscalls and if any is done in hard real time mode the hardened object is given back to Linux, 
then  depending  on  the  architecture  the  Linux  syscall  is  either  executed  immediately  (i.e. 
internally to the RTAI scheduler) and the object stolen from Linux just after returning from the 
syscall (e.g. i386) or the syscall is executed along the standard Linux syscall path, so that the 
recovery of hard real time will happen just at the next RTAI call (e.g. x86_64, at the moment). 

RTAI User Manual 3.3 - pag 18



Chapter 5 RTAI schedulers

5.3 The APIs provided by the schedulers

All the common scheduling functions are handled by the base/sched/api.c. They are the 
following:
Return Value Functions Description

int rt_get_prio (RT_TASK *task) Check a task priority. 

int rt_get_inher_prio (RT_TASK *task) Check a task priority. 

int rt_change_prio (RT_TASK *task, int priority) Change a task priority. 

RT_TASK * rt_whoami (void) Get  the  task  pointer  of  the  current 
task.

void rt_task_yield (void) Yield the current task

Int rt_task_suspend (RT_TASK *task) rt_task_suspend  suspends  execution 
of the task task.

Int rt_task_resume (RT_TASK *task) Resume a task.

Int rt_get_task_state (RT_TASK *task) Query task state.

void rt_linux_use_fpu (int use_fpu_flag) Set indication of FPU usage.

Int rt_task_use_fpu (RT_TASK *task, int use_fpu_flag)

Int rt_task_signal_handler (RT_TASK *task, void(*handler)(void)) Set the signal handler of a task.

Int rt_task_make_periodic_relative_ns  (RT_TASK  *task,  RTIME 
start_delay, RTIME period)

Make a task run periodically.

Int rt_task_make_periodic  (RT_TASK  *task,  RTIME  start_time, 
RTIME period)

Make a task run periodically.

Int rt_task_wait_period (void) Wait till next period.

RTIME next_period (void) Get the  time a periodic  task  will  be 
resumed  after  calling 
rt_task_wait_period.

Void rt_busy_sleep (int ns) Delay/suspend execution for a while.

Int rt_sleep (RTIME delay) Delay/suspend execution for a while.

Int rt_sleep_until (RTIME time) Delay/suspend execution for a while.

Int rt_register (unsigned long name, void *adr, int type, struct 
task_struct *t)

Register an object.

Int rt_drg_on_name (unsigned long name) Deregister an object by its name.

Int rt_drg_on_adr (void *adr) Deregister an object by its address.

unsigned long rt_get_name (void *adr) Get an object name by its address.

void * rt_get_adr (unsigned long name) Get an object address by its name. 

by using them a program can access the scheduling capabilities offered by RTAI.

5.3.1 Functions descriptions

int rt_get_prio (RT_TASK *task)
  
With this functions a program can check the actual priority of a task. It returns the base priority 
of task task.
It's is important to remember that a task has a base native priority, assigned at its birth or by 
rt_change_prio() function, and an actual, inherited, priority. They can be different because of 
priority inheritance.

Parameters:
    task is the affected task. 

Returns:
    rt_get_prio returns the priority of task task.
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This function and the next two ones deal with the priority of a task. The priority values are 
defined in the include file base\include\rtai_sched.h as follow:

#define RT_SCHED_HIGHEST_PRIORITY 0
#define RT_SCHED_LOWEST_PRIORITY 0x3fffFfff
#define RT_SCHED_LINUX_PRIORITY 0x7fffFfff

Note  that  tasks  with  higher  priority  (lower  values)  are  executed  before  and  cannot  be 
interrupted by tasks with lower priority (higher values).

int rt_get_inher_prio (RT_TASK *task)
  
This function checks the actual  priority of a task. It  returns the base priority task task has 
inherited from other tasks, either blocked on resources owned by or waiting to pass a message 
to task task. 

Parameters:
    task is the affected task.

Returns:
    rt_get_inher_prio returns the priority of task task.

int rt_change_prio(RT_TASK *task,int  priority)

With this function it is possible to change the base priority of a given task task.  Recall that a 
task has a base native priority, assigned at its birth and an actual, inherited, priority. They can 
be different because of priority inheritance.

Parameters:
    task is the affected task.
    priority is the new priority, the range it 0<priority< RT_SCHED_LOWEST_PRIORITY.

Returns:
    rt_change_prio returns the base priority that the task task had before the change.

RT_TASK* rt_whoami(void)
    
This functions can be used to obtain a pointer of the current task.  The return value is the 
structure of the calling task. The structure is defined in the base\include\rtai_sched.h include 
file and contains all the data relative to a single task. 

Returns:
    The pointer to the current task.

A typical use of this function could be:
rt_task_delete(rt_whoami());
or
task=rt_whoami(); where task is defined as RT_TASK *task;

RTAI User Manual 3.3 - pag 20



Chapter 5 RTAI schedulers

The definition of RT_TASK structure is the the following and as you can see it contains all the 
informations relative to a task to be properly handled by RTAI.

typedef struct rt_task_struct {
    long *stack __attribute__ ((__aligned__ (L1_CACHE_BYTES)));
    int uses_fpu;
    int magic;
    volatile int state, running;
    unsigned long runnable_on_cpus;
    long *stack_bottom;
    volatile int priority;
    int base_priority;
    int policy;
    int sched_lock_priority;
    struct rt_task_struct *prio_passed_to;
    RTIME period;
    RTIME resume_time;
    RTIME yield_time;
    int rr_quantum;
    int rr_remaining;
    int suspdepth;
    struct rt_queue queue;
    int owndres;
    struct rt_queue *blocked_on;
    struct rt_queue msg_queue;
    int tid; /* trace ID */
    unsigned long msg;
    struct rt_queue ret_queue;
    void (*signal)(void);
    FPU_ENV fpu_reg __attribute__ ((__aligned__ (L1_CACHE_BYTES)));
    struct rt_task_struct *prev;
    struct rt_task_struct *next;
    struct rt_task_struct *tprev;
    struct rt_task_struct *tnext;
    struct rt_task_struct *rprev;
    struct rt_task_struct *rnext;
    /* Appended for calls from LINUX. */
    long *fun_args;
    long *bstack;
    struct task_struct *lnxtsk;
    long long retval;
    char *msg_buf[2];
    long max_msg_size[2];
    char task_name[16];
    void *system_data_ptr;
    struct rt_task_struct *nextp;
    struct rt_task_struct *prevp;
    /* Added to support user specific trap handlers. */
    RT_TRAP_HANDLER task_trap_handler[HAL_NR_FAULTS];
    /* Added from rtai-22. */
    long unblocked;
    void *rt_signals;
    volatile unsigned long pstate;
    unsigned long usp_flags;
    unsigned long usp_flags_mask;
    unsigned long force_soft;
    volatile int is_hard;
    void *trap_handler_data;
    struct rt_task_struct *linux_syscall_server; 
    /* For use by watchdog. */
    int resync_frame;
    /* For use by exit handler functions. */
    XHDL *ExitHook;
    RTIME exectime[2];
    struct mcb_t mcb;
    /* Real time heaps. */
    struct rt_heap_t heap[2];
    volatile int scheduler;
#ifdef CONFIG_RTAI_LONG_TIMED_LIST
    rb_root_t rbr;
    rb_node_t rbn;
#endif
} RT_TASK __attribute__ ((__aligned__ (L1_CACHE_BYTES)));

void rt_task_yield (void)
  
This function yield the current task. That is, it stops the current task and takes it at the end of 

RTAI User Manual 3.3 - pag 21



Chapter 5 RTAI schedulers

the list of ready tasks having its same priority. The scheduler makes the next ready task of the 
same priority active.

Recall that RTAI schedulers allow only higher priority tasks to preempt the execution of lower 
priority ones. So equal priority tasks cannot preempt each other and rt_task_yield() should be 
used if a user needs a cooperative time slicing among equal priority tasks. The implementation 
of the related policy is wholly in the hand of the user. It is believed that time slicing is too much 
an overhead for the most demanding real time applications, so it is left up to you. 

int rt_task_suspend  (RT_TASK *task)   
  
The rt_task_suspend suspends the execution of the task task.
The task task will not be executed until a call to rt_task_resume() or rt_task_make_periodic() is 
made. No account is made for multiple suspends, i.e. a multiply suspended task is made ready 
as soon as it is rt_task_resumed, thus immediately resuming its execution if it is the highest in 
priority.

Parameters:
    task pointer to a task structure.

Returns:
    the task suspend depth. An abnormal termination returns as described below:

• -EINVAL: the task does not refer to a valid task.
• RTE_UNBLKD: the task was unblocked while suspended;

Similar functionality is also available by using the following 3 APIs:
1. int rt_task_suspend_if(RT_TASK *task)
2. int rt_task_suspend_until(RT_TASK *task, RTIME time)
3. int rt_task_suspend_timed(RT_TASK *task, RTIME delay)

The suspending functions can be used also as a synchronization tool, somehow similar to a 
semaphore technique but applied to to a task. That is, it can only be used by the task itself 
while the semaphore can be used to forcing a wait to other tasks. 

int rt_task_resume (RT_TASK *task)

This function resumes a task execution of the task task which has been previously suspended 
by rt_task_suspend(), or makes a newly created task ready to run. Since no account is made for 
multiple suspend rt_task_resume unconditionally resumes any task it makes ready.

Parameters:
    task pointer to a task structure.

Returns:
• 0 on success. A negative value on failure as described below:
• EINVAL: task does not refer to a valid task.

int rt_get_task_state (RT_TASK *task)
  
This API queries the actual state of a real time task task.

Parameters:
    task is a pointer to the task structure.

Return values:
Task state is formed by the bitwise OR of one or more of the following flags:
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• RT_SCHED_READY The task task is ready to run (the task is unblocked). Note that on a 
UniProcessor  machine  the  currently  running  task  is  just  in  READY  state,  while  on 
MultiProcessors can be (READY | RUNNING), see below.

• RT_SCHED_SUSPENDED The task task is blocked waiting for a resume.
• RT_SCHED_DELAYED The  task  task  is  blocked  waiting  for  its  next  running  period  or 

expiration of a timeout.
• RT_SCHED_SEMAPHORE The task  task  is  blocked on a semaphore, waiting for the 

semaphore to be signaled.
• RT_SCHED_SEND The task  task  is  blocked on sending a message,  receiver 

was not in RECEIVE state.
• RT_SCHED_RECEIVE The task task is blocked waiting for incoming messages, sends or 

rpcs.
• RT_SCHED_RPC The  task  task is  blocked  on  a  Remote  Procedure  Call, 

receiver was not in RECEIVE state.
• RT_SCHED_RETURN The  task  task  is  blocked  waiting  for  a  return  from  a  Remote 

Procedure Call; the receiver got the RPC but has not replied yet.
• RT_SCHED_RUNNING The task task is running, used only for SMP schedulers.

Note that the returned task state is just an approximate information. Timer and other hardware 
interrupts may cause a change in the state of the queried task before the caller could evaluate 
the returned value.  This  means that  the caller should disable interrupts if  it  wants reliable 
informations about an other task. It is also important to know that rt_get_task_state does not 
perform any check on pointer task.

To correctly use the rt_get_task_state_functions  is  just  a matter of  interpreting the returns 
value which can be a combination of the above flags like for example:

for (i = 0; i < NTASKS; i++) {
rt_task_resume(&thread[i]);
// to be sure they are all wait synchronized
while(!(rt_get_task_state(&thread[i]) & RT_SCHED_SEMAPHORE));
}

void rt_linux_use_fpu (int use_fpu_flag) 
  
This  function  sets  indication  of  FPU  usage  and  informs  the  scheduler  that  floating  point 
arithmetic operations will  be used also by foreground Linux processes, i.e. the Linux kernel 
itself (unlikely) and any of its processes.

Parameters:
use_fpu_flag If  this  parameter  has  a  nonzero  value,  the  Floating  Point  Unit  (FPU) 
context is also switched when task or the kernel becomes active. 

Note that enabling the use of FPU makes task switching slower, negligibly, on all 32 bits CPUs 
but 386s and the oldest 486s. This flag can be set also by rt_task_init when the real time task is 
created. With UP and MUP schedulers care is taken to avoid useless saves/restores of the FPU 
environment. Under SMP, tasks can be moved from CPU to CPU so saves/restores for tasks 
using the FPU are always carried out. Note that by default Linux has this flag cleared. Beside by 
using rt_linux_use_fpu you can change the Linux FPU flag when you insmod any RTAI scheduler 
module by setting the LinuxFpu command line parameter of the rtai_sched module itself.

int rt_task_use_fpu(RT_TASK *task, int  use_fpu_flag)
  
rt_task_use_fpu informs the scheduler that floating point arithmetic operations will be used by 
the real time task task.

Parameters:
    task is a pointer to the real time task.
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use_fpu_flag If  this  parameter  has  a  nonzero  value,  the  Floating  Point  Unit  (FPU) 
context is also switched when task or the kernel becomes active. 

Returns:
• 0 on success. A negative value on failure as described below:
• -EINVAL: task does not refer to a valid task.

See  also:  rt_linux_use_fpu()  for  a  description  on  how  the  use  of  FPU  can  affect  the  task 
switching performance.

int rt_task_signal_handler  (RT_TASK *task, void(*)(void)handler)
  
This functions sets the signal handler of a task by installing, or changing, the signal function of 
a real time task.

Parameters:
    task is a pointer to the real time task.
    handler is the entry point of the signal function.

A signal handler function can be set also when the task is newly created with rt_task_init(). The 
signal handler is a function called within the task environment and with interrupts disabled, 
when the task becomes the current running task after a context switch, except at its very first 
scheduling. It allows you to implement whatever signal management policy you think useful, 
and many other things as well.

Returns:
• 0 on success.A negative value on failure as described below:
• -EINVAL: task does not refer to a valid task.

int rt_task_make_periodic_relative_ns(RT_TASK * task, RTIME start_delay,RTIME period)
  
rt_task_make_periodic_relative_ns   makes  a  task  run  periodically;  it  marks  the  task  task, 
previously created with rt_task_init(), as suitable for a periodic execution, with period  period, 
when rt_task_wait_period() is called.

The time of first execution is defined through start_delay that is relative to the current time and 
it is measured in nanoseconds.

Parameters:
    task is a pointer to the task you want to make periodic.
    start_delay is the time, to wait before the task start running, in nanoseconds.
    period corresponds to the period of the task, in nanoseconds.

Return values:
• 0 on success. A negative value on failure as described below:
• -EINVAL: task does not refer to a valid task.

It is very important to know that the term clock ticks depends on the mode in which the hard 
timer runs. So if the hard timer was set as periodic a clock tick will last as the period set in 
start_rt_timer, while if oneshot mode is used, a clock tick will last as the inverse of the running 
frequency  of  the  hard  timer  in  use  and  irrespective  of  any  period  used  in  the  call  to 
start_rt_timer.

The following source code, which is taken from the showroom repository (kern/i386/scb), uses 
this  api.  Inside  this  code,  that  is  designed  to  run  in  kernel  mode you  will  also  see  some 
important APIs which are not described yet, but it is important to start see them because they 
have already been mentioned in the introduction and they are mandatory to set up a real time 
task. Note that for proof reading the following source code the APIs coloured in red represent 
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the ones described inside this chapter, while the blue ones are the one simply mentioned.

Example 1 speaker.c:

#include <linux/kernel.h>
#include <linux/module.h>
#include <asm/io.h>
#include <rtai_nam2num.h>
#include <rtai_sched.h>
#include <rtai_scb.h>
#include "pcsp_tables.h"
MODULE_LICENSE("GPL");
//#define CONFIG_X86_64
#define SCBSUPRT  USE_GFP_ATOMIC
#define SCBSIZ    2000
#define TICK_PERIOD 25000 /* 40 khz */
#define DIVISOR 5
#define STACK_SIZE 4000
/*You can make this bigger, but then you start to get
*clipping, which sounds bad.  29 is good.
 */
#define VOLUME  30
static RT_TASK thread;
static int cpu_used[NR_RT_CPUS];
static unsigned char vl_tab[256];
static int port61;
static void *scb;
static volatile int end;
#define PORT_ADR 0x61
static int filter(int x)
{
        static int oldx;
        int ret;
        if (x & 0x80) {
               x = 382 – x;
        }
        ret = x > oldx;
        oldx = x;
        return ret;
}

static void intr_handler(long t)
{

char data, temp;
int go = 0;
int divisor = DIVISOR;
while (!end) {

if (!(--divisor)) {
divisor = DIVISOR;
cpu_used[hard_cpu_id()]++;
go = !rt_scb_get(scb, &data, 1);

                }
 else {

                        go = 0;
                }

if (go) {
#ifdef CONFIG_X86_64
                        data = filter(data);
                        temp = inb(PORT_ADR);
                        temp &= 0xfd;
                        temp |= (data & 1) << 1;
                        outb(temp, PORT_ADR);

#else
outb(port61, 0x61);
outb(port61^1, 0x61);
outb(vl_tab[((unsigned int)data)&0xff], 0x42);

#endif
}
rt_task_wait_period();

}
}

int init_module(void)
{

int i;
outb_p(0x92, 0x43);  /* binary, mode1, LSB only, ch 2 */
for (i = 0; i < 256; vl_tab[i] = 1 + ((VOLUME*ulaw[i]) >> 8), i++);

port61 = inb(0x61) | 0x3;
scb = rt_scb_init(nam2num("SCB"), SCBSIZ, SCBSUPRT);
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rt_task_init(&thread, intr_handler, 0, STACK_SIZE, 0, 0, 0);
rt_set_oneshot_mode();
start_rt_timer(0);
rt_task_make_periodic_relative_ns(&thread, 10000000, TICK_PERIOD);
return 0;

}

void cleanup_module(void)
{

int cpuid;
end = 1;
stop_rt_timer();
rt_task_delete(&thread);
rt_scb_delete(nam2num("SCB"));
printk("\n\nCPU USE SUMMARY\n");
for (cpuid = 0; cpuid < NR_RT_CPUS; cpuid++) {

printk("# %d -> %d\n", cpuid, cpu_used[cpuid]);
}
printk("END OF CPU USE SUMMARY\n\n");

}

 

int rt_task_make_periodic (RT_TASK * task, RTIME start_time, RTIME period)
    
This function is similar to the previous one with the only difference that start_time and period 
are in clock ticks instead of nanoseconds. It makes a task run periodically by marking the task 
task,  previously created with rt_task_init(),  as suitable for a periodic execution, with period 
period, when rt_task_wait_period() is called.

The time of first execution is defined through start_time that is an absolute value measured in 
clock ticks. 

Parameters:
    task is a pointer to the task you want to make periodic.
    start_time is the absolute time to wait before the task start running, in clock ticks.
    period corresponds to the period of the task, in clock ticks.

Return values:
• 0 on success. A negative value on failure as described below:
• -EINVAL: task does not refer to a valid task.

See also: rt_task_make_periodic_relative_ns(). Recall that the term clock ticks depends on the 
mode in which the hard timer runs. So if the hard timer was set as periodic a clock tick will last 
as the period set in start_rt_timer, while if oneshot mode is used a clock tick will last as the 
inverse of the running frequency of the hard timer in use and irrespective of any period used in 
the call to start_rt_timer.

int rt_task_wait_period(void)
  
This function waits till next period by suspending the execution of the currently running real 
time task until the next period is reached. The task must have been previously marked for a 
periodic execution by calling rt_task_make_periodic() or rt_task_make_periodic_relative_ns().

Returns:
• 0  if  the  period  expires  as  expected.  An  abnormal  termination  returns  as  described 

below:
• RTE_UNBLKD: the task was unblocked while sleeping;
• RTE_TMROVRN: an immediate return was taken because the next period has already 

expired.

Note that the task is suspended only temporarily, this means that it simply gives up control 
until the next time period.
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RTIME next_period (void)

It gets the time a periodic task will be resumed after calling rt_task_wait_period. This function 
returns the time when the caller task will run next. Combined with the appropriate rt_get_time 
function() it can be used for checking the fraction of period used or any period overrun.

Returns:
    Next period time in internal count units.

void rt_busy_sleep (int ns)

This function delays/suspends the execution of the calling task for a specified period of time 
without giving back the control to the scheduler. This means that rt_busy_sleep burns away 
CPU cycles in a busy wait loop so it should be used only for very short synchronization delays. 
On machine not having a TSC clock it can lead to many microseconds uncertain busy sleeps 
because of the need of reading the 8254 timer.

Parameters:
    ns is the number of nanoseconds to wait.

The sleep action can also be performed by using two different functions:
• rt_sleep(RTIME delay) that suspends the execution of the caller task for a time of delay 

in internal count units. During this time the CPU is used by other tasks. This function 
return 0 if the delay expires as expected or RTE_UNBLKD if the task was unblocked while 
sleeping or RTE_TMROVRN if an immediate return was taken because the delay is too 
short to be honoured.

• rt_sleep_until(RTIME time) that  is similar  to rt_sleep()  but  the parameter  time is  the 
absolute time till the task have to be suspended. If the given time is already passed this 
call has no effect. It returns 0 if the sleeping expires as expected or RTE_UNBLKD if the 
task was unblocked while sleeping or RTE_TMROVRN if an immediate return was taken 
because the time deadline has already expired.

Note that an higher priority task or interrupt handler can run before the task goes to sleep, so 
the actual time spent in these functions may be longer than that specified.

int rt_register (unsigned long name, void *adr, int type, struct task_struct *  t)
  
This function is used to register an object identified with name, which is pointed by adr.

Returns:
    a positive number on success, 0 on failure

An  example  on  how  to  use  this  function  is  available  in  the  showroom  repository  under 
/user/i386/resumefrominter.  The following source code shows two ways for  waking up user 
space hard real time processes directly from interrupt handlers. The process itself can then act, 
partly or as a whole, as an interrupt handler but do not confuse it with bottom halves, it is 
better, more direct, effective and true real time. It is based on using either suspend/resume or 
semaphore  wait/signal.  In  this  example,  you can also  control  period,  duration  and wakeup 
method through macros in period.h.  As already described before the APIs described in this 
chapter are marked in red.

Example 2 rt_handler.c:

#include <linux/module.h>
#include <asm/io.h>
#include <rtai_registry.h>
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#include <rtai_mbx.h>
#include "period.h"
static MBX mbx;
static SEM sem;
static char wakeup;
static void rt_timer_tick(void)
{

RT_TASK *task;
rt_times.tick_time = rt_times.intr_time;
rt_times.intr_time = rt_times.tick_time + rt_times.periodic_tick;
rt_set_timer_delay(0);
if (rt_times.tick_time >= rt_times.linux_time) {

rt_times.linux_time += rt_times.linux_tick;
rt_pend_linux_irq(TIMER_8254_IRQ);

} 
rt_mbx_receive_if(&mbx, &wakeup, 1);
if (wakeup) {

if ((task = rt_get_adr(nam2num("PRCTSK")))) {
if (wakeup==1) rt_sem_signal(&sem);
else rt_task_resume(task);

}
}

}

int init_module(void)
{

rt_mbx_init(&mbx, 1);
rt_register(nam2num("RESMBX"), &mbx, IS_MBX, 0);
rt_sem_init(&sem, 0);
rt_register(nam2num("RESEM"), &sem, IS_SEM, 0);
rt_request_timer(rt_timer_tick, imuldiv(PERIOD, FREQ_8254, 1000000000), 0);
return 0;

}

void cleanup_module(void)
{

rt_free_timer();
rt_mbx_delete(&mbx);
rt_sem_delete(&sem);

}

int rt_drg_on_name (unsigned long  name)
  
This function de-registers an object identifyed by its name.

Returns:
    a positive number on success, 0 on failure.

int rt_drg_on_adr(void * adr)   
  
This function de-registers an object by its address.

Returns:
    a positive number on success, 0 on failure.

void* rt_get_adr (unsigned long name)

It gets an object address by its name.

Returns:
    the address associated to name on success, 0 on failure

unsigned long rt_get_name (void * adr)

This function gets an object name by its address.

Returns:
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    the identifier pointed by the address adr on success, 0 on failure.
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